Living Museum of the Great Western Railway

Home » Other Articles » Going Loco Index » Going Loco - May 2020 - Going Loco - May 2020

Going Loco - May 2020


We’re NOT going on a summer holiday...

(With sincerest apologies to Cliff Richard)

As it’s English Tourism Week, and there can’t be too much of the real thing going on right now, we thought that we would take you on a virtual journey with the aid of our GWR locomotive collection. Of course, Brunel’s original intention was to have the trains meet the steamships at Bristol and that GWR took you to New York but we digress. Let’s see how far we can get from Didcot. The rule is that it has to be a GWR loco that is definitely named after a place (not a historical or mythical figure) that actually exists. Join us if you will...

There is a whole plethora of suggestions of places to visit and indeed many of the locomotives were named after tourist attractions that the GWR could help you reach. Canny folk these old school GWR types - subliminal messaging on the engines... As classes got bigger and bigger, the net got cast wider and wider as examples on the GWR network dried up. This is particularly apparent in the Halls and Castles. Let’s have a look at the engines in our collection named after places and see if we can get provide some inspiration for you when normal travel and tourism resumes - after you have visited Didcot Railway Centre of course!

Cookham Manor (No. 7808) isn’t an easy one to tie down as a destination as there really isn’t a specific building called Cookham Manor today. There are a few buildings that could well have acted as the local manor house but as these are all private dwellings or businesses, we had better not direct you tourists there... So, breaking the rules slightly, having a look in the excellent Stanley Spencer Museum and then a bite to eat and a drink in one of the many pubs and restaurants in the little high street there is your best bet frankly! It’s only about 30 miles from Didcot as the crow flies and it’s rail connected too by the former and indeed our friends in the modern GWR.


Hinderton Hall (No. 5900) is just outside Neston in Cheshire. It is notable in that it was designed in 1856 by noted architect Alfred Waterhouse who you may know from his work on the Natural History Museum in London and Manchester Town Hall. It has been used as offices in the past and is now open for events and functions. This gets us out to 186 miles from the centre.


Burton Agnes Hall’s (No. 6998) namesake is in Yorkshire. It was built for Sir Henry Griffith between 1601 to 1610 and it stands adjacent to the still surviving Norman Manor House from 1173. In immaculate condition, it is normally open for visitors and events venue and is 212 miles from our little corner of Oxfordshire.


Drysllwyn Castle (a.k.a. Earl Bathurst, No. 5051) is sited on a small rocky hill between Carmarthen and Llandeilo. This is English Tourism week so we can’t go into depth here. Sneaky website address below however - quite interesting, shhhhh! That gets us 165 miles from home shed.


Also in Wales, The County of Glamorgan (No. 1014) has a lot of great attractions in it and although our initial inspiration was English Tourism Week, we have included a link to their tourist website below. To give us our measurement, Barry Island where the former site of the famous Scrapyards is would be about a 122 mile journey from Didcot.

The frames of our County replica return us to England as they come from Willington Hall (No. 7927). The building is in Cheshire and is a grade II listed structure built in the Neo-Elizabethan style in 1829. Its slightly smaller that it was as originally built and is used today as a hotel which requires any of us at Didcot to have to travel 158 miles if we want to stay there.


Pendennis Castle (No. 4079) is an artillery fort built on the orders of King Henry VIII (No. 6013 - not preserved but we just couldn’t resist it!) between 1540 and 1542. It is situated just outside Falmouth in Cornwall and was under siege in the English Civil war by the parliamentary forces who were led by Oliver Cromwell (No. 70013 - in the NRM collection. We promise to stop now...). It is a English Heritage property and a trip there from 81E will be one of 255 miles, giving us our local distance champion!

Just for fun, let’s look a beyond our collection and open the history books. The Star Classes. There have been two. The first set of engines were broad gauge, built near to the middle of the 19th Century. The second were standard gauge, built in the early 20th Century. They followed basically the same set of names. Sadly, not all of the Star Class names refer to specific celestial bodies (e.g. Red Star or Rising Star) but for certain we can definitely tie down these few to specific heavenly objects.

The perennial favourite Evening Star (built in 1839 or 1907 or by BR as a Class 9F 2-10-0* in 1960) is an alternative name for the planet Venus and is about 25,000,000 miles away. Morning Star (1839 or 1907) is possibly confusingly also named after Venus. You can then have Dog Star (1839 or 1907) which refers to Sirius which is in the constellation Canis Major - hence the name. Actually, it’s a binary star made of the larger Sirius A and the smaller white Dwarf Sirius B. One of the closest of our stellar neighbours, it’s at a distance of 8.6 light years or 50,560,000,000,000 miles away. Which would have taken our weekend getaway destination crown, if it were not for our winner.

Which smashes it out of the park. . .

North Star (1837 or 1906), Polar Star (1840 or 1907) and Lode Star** (1841 or 1907*) all refer, in one way or another to Polaris. The Pole Star, beloved of navigators here on Earth due to its brightness and position approximately above the North Pole. It is, wait for it, about 433 light years away. That is a staggering 2,545,000,000,000,000 miles away from Didcot.

This post was done with the most cursory of glances, so for a bit of lock down fun, but it’s now your turn. How much further from Didcot than our loco names could you travel on a GWR name plate? There are four categories:

English destinations

Other U.K. place names

International travel


The loco need not be preserved. It has to be definitely named after a real place and may not be something that was probably named after something else - for example the broad gauge engine Mars or Jupiter were named after the Roman gods and not the planets. Please post your answers on our Facebook page. Over to you...

*Both No. 4003 Lode Star and No. 92220 Evening Star are part of the National Collection along with No. 70013 Oliver Cromwell. Please consult their website to find out where they are currently located.

** The word lodestar (it can be spelt without the space as well) can also be a used to describe any star that can be used as a navigational reference point but its etymological origin is as an archaic name for Polaris. This is from the archaic word lode which means way, path or road. Which brings this footnote full-circle...


A valve by any other name could be a gear?

Let’s dive under the skin of our locos for today’s blog post! There are lots of valves on a steam locomotive. Arguably, the most important are the two on top of the boiler - the safety valves. These allow an excess of steam pressure to be released if it goes too high. Without these, things could go very wrong - quickly... We will save boiler talk for another day, however. There are valves that control the whistles. It was not unknown for, on rare occasions, these valves to get stuck open. Imagine the noise! There isn’t any easy way to stop it while the engine is in steam either. Today, let’s look at the valves that make the engines go: the ones next to the cylinders.

These valves do a two-fold job. They allow the fresh or live steam from the boiler into the side of the piston so it can push on it. It also opens the exhaust port to allow the steam that has been used on the other side of the piston to escape up the chimney and make that lovely noise we all like to hear(!). These valves are moved backwards and forwards by the valve gear - a complex subject in its own right. Through the valve gear, we can make changes to the way the valves operate. In the same way a car has gears, a steam engine has a similar sort of setting called cut off. This is controlled by the reverser. The reverser can be either the pole type - a long lever with just a few settings on it but quick to use or a screw type which has a huge range of different settings, adjusted by winding a handle. This takes more time and effort to operate, however. Later passenger and mixed traffic engines as a rule had screw reversers. Engines that primarily did slower goods work or shunting that needed to change direction frequently have pole reversers. As she is based on an earlier passenger loco, No. 2999 “Lady of Legend”, bucks this trend and has a pole reverser! (Iron) horses for courses...

Just like a car, you pull away in the equivalent of 1st gear which is, on a steam engine, is usually marked off on the reverser at 75%. This means that for 75% of the total distance that the piston travels from one end of the cylinder to the other, live steam is being allowed to push on it. So, Lady of Legend has a piston stroke of 30” (762mm). At 75% cut off, when the piston starts its journey down the cylinder, live steam will be injected until the piston gets to a point 22.5” (571.5mm) or 75% along its travel to the other end. The final 25% of the journey is to allow the steam to do its work and expand.

Now you don’t drive your car around in first gear (we hope...) and likewise, you don’t do the same with a steam engine. If you left the engine in 75% cut off, you will empty the boiler of steam very quickly and end up with a very grumpy fireman. So, what you do is to go ‘up the gears’ by reducing the cut off. So, as you accelerate your express train out of Paddington, you go through 50% to a cruising speed of, perhaps, around 70 to 80 miles an hour at roughly 25% cut off. At these low cut offs, the idea is that the locomotive has overcome the weight of the train and is now just keeping it rolling. This requires less energy. So, the valve is now only allowing steam in for just 7.5” (190.5mm) or 25% of the pistons travel. The amount of steam going in is less and the steam is being allowed to expand much further. This is much more efficient.

If the engine starts to work harder going up a hill for example, the driver will increase the cut off and the fireman will have to work that bit harder to keep up. He should of course get a bit of relief on the other side of the hill as when it rolls down with the help of gravity. Thank you Sir Issac Newton...

Don’t forget that steam loco pistons are double acting. Unlike in a car engine, a steam locomotive piston is driven in both directions. Forwards and backwards. That’s two changes of direction in one revolution of the wheel per piston. That’s four very precise changes of valve position and therefore piston direction for every revolution of the driving wheels for a two-cylinder engine like No. 2999. With four Cylinders machines like our King or Castles, you need eight very accurate changes per revolution. Now consider how many revolutions per second are being done by the wheels of that King or Castle if it was going all out at 100mph...

This photograph shows No 7018 soon after she was the first of the Castle class to be fitted with double chimney in May 1956. She is hauling the Torbay Express from London to Kingswear, and under test with cables leading from the smokebox to the dynamometer car which is the leading vehicle in the train.


Taking The Water

Amongst the varied collection at the Railway Centre, we have a rather unusual piece of steel channel which is currently tucked out of the way in the corner close to our Science of Railways carriages

The item in question is a short section of water trough. These were located at strategic points on the Great Western Railway to allow steam locomotives to pick up water on the move and thereby eliminating the need to stop to fill up.

The nearest set of troughs to Didcot were situated at Pangbourne, about 12 miles away as the crow flies and around 17 minutes by stopping train. All four lines were equipped with the troughs, which were fed by water from a small treatment plant situated next to the railway.

To pick up water the fireman would lower a scoop underneath the locomotive’s tender scoop once the tender was over the trough, and raise it when the water indicator showed the tank approaching full and definitely before the end of the trough. If the fireman was slow in retracting the scoop, the tender would overflow from the rear filler and deluge the leading coach of the train!

The following is an abbreviated extract from the GWR’s instructions to enginemen:

The speed when putting in the scoop to pick up water must not exceed 50mph. The water will go into the tender when the speed is about 20mph and no more will be picked up at 50mph than at 25 or 30, but rather less, because at the higher speed the water heap up at the back of the tank and overflows before it has time to settle down level.

Doubling the speed more than doubles the pressure of the water on the nose of the scoop. At 30mph the pressure on the scoop when in the water is about 5cwt ad 60mph the pressure is 20cwt

Drivers should examine and try the working of the scoop when over a pit, before each trip.

As well as the section of trough, we also have a pick up scoop.  This comes from the tender of 6023 “King Edward II” and was removed when there was a possibility that the locomotive could operate on Network Rail. As the Society can reach more visitors by hiring locomotives to other heritage railways, the scoop will be refitted to 6023’s tender, another step in increasing the authenticity of the locomotive’s condition.

Photographs show trains picking up water at Goring troughs.




No. 3822 – Built To Serve

Sitting in the running shed at Didcot is a huge and powerful beast. At the moment, she is resting, awaiting her moment in the works again after the Heavy Freight Gang has finished the restoration of No. 7202. This locomotive, despite being one of the youngest engines in the shed has an impressive history.

No. 3822 is the number proudly displayed on her cab sides but as you cast your eye over this monster 2-8-0 tender locomotive a few things don’t quite add up. She is undoubtedly a GWR design. Despite her less glamorous purpose as a heavy freight locomotive, the elegant lines of the Standard No. 1 boiler and the brass safety valve bonnet clearly show this. But as you look at her, the first thing that is noticeable is that she wears an unusual livery. These locomotives were often painted black in British Railways days but she quite clearly wears the GWR legend on her tender. Furthermore, as you look up those cab sides you can see that there is a hole for a window but it’s plated over with a sheet of steel. This isn’t just a heavy freight machine - this is a war machine. This is a soldier of the home front and it’s a part of WWII history that is often overlooked.

No. 3822 is a member of the illustrious 28XX family of locomotives that date all the way back to 1903 and the first of the 2-8-0 heavy freight locomotives to appear in the UK and was designed by none other than Mr George Jackson Churchward. The prototype machine as originally numbered No. 97 but when series production began in 1905, she became the first member of the 28XX Class as No. 2800. In this first batch 84 were built, the last one - No. 2883 - appearing in 1919. When Mr Churchward’s successor, Charles Benjamin Collett, needed more heavy freight locomotives with the looming spectre of a new world war on the horizon in 1938, a slightly updated version of the spectacularly successful design called the 2884 Class began construction. Another 83 were built with the last one being turned out in 1942. The world was in a very different situation to the one that No. 97 was born into in 1903...

The railway that No. 3822 first turned her wheels on was no longer the place where speed records, luxury and glamour were the watchwords. Gone was all this to be replaced by the need to get war materiel to the right place at the right time. Gone were the traditional green liveries, replaced by the somber austerity black colour. The cab windows had been taken away and plated over in order to prevent the searchlight like glow of the fire of the engine working hard being seen by enemy aircraft, leading them in to a target. In fact the whole of the cab received a kind of heavy canvas tent like structure to prevent the light reaching the skies. A replica has been made for No. 3822 in preservation and when you see it in place you are immediately struck by the lack of two things. The ability to see out of anything but the front cab windows and the ability to get fresh air into the cab.

The position of locomotive crew was a reserve occupation in WW2. This meant that despite the call up to military service of tens of thousands of men across the country, due to the huge amount of skill and knowledge required to operate a steam locomotive on the rail network of the time, they were expected to carry on doing their jobs. Bear in mind that you are doing all this work in a cab that has become akin to an oven, that you can barely see the track ahead because of both the restricted view afforded by the screens and the blackout in general and you were doing all this on regular wartime rations. Oh yes, and your shifts are now super long too. The railway is now absolutely clogged with freight trains. It all had to be there immediately or sooner and couple that with situations whereby the track was under attack from enemy bombing raids and you get a recipe for some very extended timetables.

It wasn’t unusual for a crew to have to work a locomotive beyond its usual limits and pull loads far greater what it would do normally. If you weren’t doing that it was also not unusual for a crew to join a train in a goods loop, waiting for authorisation to proceed and twelve to fourteen hours later get of the engine perhaps having not moved at all. Hours and hours of work in dreadful conditions with a lack of food and sleep and driving along a railway that possibly ended in a bomb crater 100 yards ahead that the blackout was concealing. There was a speed restriction of 60mph in effect on the entire UK rail network as well. This didn’t help make the timetable situation any better, especially as the long, largely un-braked freight trains were limited to 25mph even before the war. Despite this, stories of trains being chased into tunnels by enemy aircraft to act as a makeshift air raid shelter were not unheard of.

The risk to life and limb wasn’t just in the cab of the locos either, each train had a guard on board. If the loco crew were caught out in an air raid, they may get a minimal amount of protection under their engine but the guard was in a wooden bodied vehicle... The UK railway was the stage for some quite remarkable acts of heroism, the best know of which has to be the sacrifice and stoicism shown by the crew of an LNER munitions train at Soham, Cambridgeshire in 1944 that caught fire. The crew of the train and the local signalman managed to uncouple the burning wagons and pull them away from the village saving many lives but at the cost of the life of Signalman Frank Bridges and Driver Benjamin Gilbert. The crater left when the small portion of the train exploded was 66 feet (20.1 m) in diameter and 15 feet (4.6 m) deep. It demolished a lot of the railway infrastructure around it including the station. In an astonishing display of resilience, there were freight trains running a mere 18 hours after the incident and a full service was running the next day.

Born into war, No. 3822 tells the story of her conflict. Along with No. 5322 (a WWI veteran), they have the privilege of carrying the history of the Great Western Railway and the two world wars. Next time you look up at them, take a moment to remember that they are in effect rolling war memorials. Whilst we today naturally remember the victory of 1945, we must never forget or take for granted the blood, sweat and tears shed in order to secure that outcome. Lives were laid down by both the enlisted personnel and those who fought on the home front, keeping the nation safe and the war machine running.

It is perhaps also fitting that we consider this aspect of the past, given the current world situation. Let us also spare a moment too for the soldiers protecting us today on the medical front line of our modern home front. Keeping them moving? The railways are helping to get those key workers to and from their battlefronts. Many of our volunteers at Didcot are also employed on the modern railway as part of their day job. The railway continues to serve.

Lest we forget...

The danger to locomotive crews was such that Didcot Shed was provided with an Air Raid Shelter to keep enginemen safe.  The original shelter now houses an AV experience so that school children and other visitors can get an impression of what it was like to ride out an enemy attack.


« Back To Going Loco Index

Didcot Railway Centre Newsletter

Stay up to date with events and what's going on at Didcot Railway Centre.
You may unsubscribe at any time. We do not share your data with 3rd parties.


Make A Donation

Click To Donate